Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Conifer expansion reduces the competitive ability and herbivore defense of aspen by modifying light environment and soil chemistry.

Identifieur interne : 002F42 ( Main/Exploration ); précédent : 002F41; suivant : 002F43

Conifer expansion reduces the competitive ability and herbivore defense of aspen by modifying light environment and soil chemistry.

Auteurs : W John Calder [États-Unis] ; Kevin J. Horn ; Samuel B. St Clair

Source :

RBID : pubmed:21602559

Descripteurs français

English descriptors

Abstract

Disturbance patterns strongly influence plant community structure. What remains less clear, particularly at a mechanistic level, is how changes in disturbance cycles alter successional outcomes in plant communities. There is evidence that fire suppression is resulting in longer fire return intervals in subalpine forests and that these lengthened intervals increase competitive interactions between aspen and conifer species. We conducted a field and greenhouse study to compare photosynthesis, growth and defense responses of quaking aspen and subalpine fir regeneration under light reductions and shifts in soil chemistry that occur as conifers increase in dominance. The studies demonstrated that aspen regeneration was substantially more sensitive to light and soil resource limitations than that of subalpine fir. For aspen, light reductions and/or shifts in soil chemistry limited height growth, biomass gain, photosynthesis and the production of defense compounds (phenolic glycosides and condensed tannins). Biomass gain and phenolic glycoside concentrations were co-limited by light reduction and changes in soil chemistry. In contrast, subalpine fir seedlings tended to be more tolerant of low light conditions and showed no sensitivity to changes in soil chemistry. Unlike aspen, subalpine fir increased its root to shoot ratio on conifer soils, which may partially explain its maintenance of growth and defense. The results suggest that increasing dominance of conifers in subalpine forests alters light conditions and soil chemistry in a way that places greater physiological and growth constraints on aspen than subalpine fir, with a likely outcome being more successful recruitment of conifers and losses in aspen cover.

DOI: 10.1093/treephys/tpr041
PubMed: 21602559


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Conifer expansion reduces the competitive ability and herbivore defense of aspen by modifying light environment and soil chemistry.</title>
<author>
<name sortKey="Calder, W John" sort="Calder, W John" uniqKey="Calder W" first="W John" last="Calder">W John Calder</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT</wicri:regionArea>
<placeName>
<region type="state">Utah</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Horn, Kevin J" sort="Horn, Kevin J" uniqKey="Horn K" first="Kevin J" last="Horn">Kevin J. Horn</name>
</author>
<author>
<name sortKey="St Clair, Samuel B" sort="St Clair, Samuel B" uniqKey="St Clair S" first="Samuel B" last="St Clair">Samuel B. St Clair</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21602559</idno>
<idno type="pmid">21602559</idno>
<idno type="doi">10.1093/treephys/tpr041</idno>
<idno type="wicri:Area/Main/Corpus">002E06</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002E06</idno>
<idno type="wicri:Area/Main/Curation">002E06</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002E06</idno>
<idno type="wicri:Area/Main/Exploration">002E06</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Conifer expansion reduces the competitive ability and herbivore defense of aspen by modifying light environment and soil chemistry.</title>
<author>
<name sortKey="Calder, W John" sort="Calder, W John" uniqKey="Calder W" first="W John" last="Calder">W John Calder</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT</wicri:regionArea>
<placeName>
<region type="state">Utah</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Horn, Kevin J" sort="Horn, Kevin J" uniqKey="Horn K" first="Kevin J" last="Horn">Kevin J. Horn</name>
</author>
<author>
<name sortKey="St Clair, Samuel B" sort="St Clair, Samuel B" uniqKey="St Clair S" first="Samuel B" last="St Clair">Samuel B. St Clair</name>
</author>
</analytic>
<series>
<title level="j">Tree physiology</title>
<idno type="eISSN">1758-4469</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Abies (growth & development)</term>
<term>Abies (metabolism)</term>
<term>Adaptation, Physiological (MeSH)</term>
<term>Animals (MeSH)</term>
<term>Biota (MeSH)</term>
<term>Hydroxybenzoates (metabolism)</term>
<term>Insecta (physiology)</term>
<term>Photosynthesis (MeSH)</term>
<term>Plant Growth Regulators (biosynthesis)</term>
<term>Plant Roots (growth & development)</term>
<term>Plant Shoots (growth & development)</term>
<term>Populus (growth & development)</term>
<term>Populus (metabolism)</term>
<term>Populus (parasitology)</term>
<term>Proanthocyanidins (biosynthesis)</term>
<term>Seedlings (growth & development)</term>
<term>Soil (chemistry)</term>
<term>Sunlight (MeSH)</term>
<term>Trees (growth & development)</term>
<term>Utah (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Abies (croissance et développement)</term>
<term>Abies (métabolisme)</term>
<term>Adaptation physiologique (MeSH)</term>
<term>Animaux (MeSH)</term>
<term>Arbres (croissance et développement)</term>
<term>Biote (MeSH)</term>
<term>Facteur de croissance végétal (biosynthèse)</term>
<term>Hydroxybenzoates (métabolisme)</term>
<term>Insectes (physiologie)</term>
<term>Lumière du soleil (MeSH)</term>
<term>Photosynthèse (MeSH)</term>
<term>Plant (croissance et développement)</term>
<term>Populus (croissance et développement)</term>
<term>Populus (métabolisme)</term>
<term>Populus (parasitologie)</term>
<term>Pousses de plante (croissance et développement)</term>
<term>Proanthocyanidines (biosynthèse)</term>
<term>Racines de plante (croissance et développement)</term>
<term>Sol (composition chimique)</term>
<term>Utah (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Plant Growth Regulators</term>
<term>Proanthocyanidins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Soil</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Hydroxybenzoates</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Facteur de croissance végétal</term>
<term>Proanthocyanidines</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Sol</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Abies</term>
<term>Arbres</term>
<term>Plant</term>
<term>Populus</term>
<term>Pousses de plante</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Abies</term>
<term>Plant Roots</term>
<term>Plant Shoots</term>
<term>Populus</term>
<term>Seedlings</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Abies</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Abies</term>
<term>Hydroxybenzoates</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="parasitologie" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="parasitology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Insectes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Insecta</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adaptation, Physiological</term>
<term>Animals</term>
<term>Biota</term>
<term>Photosynthesis</term>
<term>Sunlight</term>
<term>Utah</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Adaptation physiologique</term>
<term>Animaux</term>
<term>Biote</term>
<term>Lumière du soleil</term>
<term>Photosynthèse</term>
<term>Utah</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Disturbance patterns strongly influence plant community structure. What remains less clear, particularly at a mechanistic level, is how changes in disturbance cycles alter successional outcomes in plant communities. There is evidence that fire suppression is resulting in longer fire return intervals in subalpine forests and that these lengthened intervals increase competitive interactions between aspen and conifer species. We conducted a field and greenhouse study to compare photosynthesis, growth and defense responses of quaking aspen and subalpine fir regeneration under light reductions and shifts in soil chemistry that occur as conifers increase in dominance. The studies demonstrated that aspen regeneration was substantially more sensitive to light and soil resource limitations than that of subalpine fir. For aspen, light reductions and/or shifts in soil chemistry limited height growth, biomass gain, photosynthesis and the production of defense compounds (phenolic glycosides and condensed tannins). Biomass gain and phenolic glycoside concentrations were co-limited by light reduction and changes in soil chemistry. In contrast, subalpine fir seedlings tended to be more tolerant of low light conditions and showed no sensitivity to changes in soil chemistry. Unlike aspen, subalpine fir increased its root to shoot ratio on conifer soils, which may partially explain its maintenance of growth and defense. The results suggest that increasing dominance of conifers in subalpine forests alters light conditions and soil chemistry in a way that places greater physiological and growth constraints on aspen than subalpine fir, with a likely outcome being more successful recruitment of conifers and losses in aspen cover.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21602559</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>10</Month>
<Day>31</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>08</Month>
<Day>16</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1758-4469</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>31</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2011</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Tree physiology</Title>
<ISOAbbreviation>Tree Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Conifer expansion reduces the competitive ability and herbivore defense of aspen by modifying light environment and soil chemistry.</ArticleTitle>
<Pagination>
<MedlinePgn>582-91</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/treephys/tpr041</ELocationID>
<Abstract>
<AbstractText>Disturbance patterns strongly influence plant community structure. What remains less clear, particularly at a mechanistic level, is how changes in disturbance cycles alter successional outcomes in plant communities. There is evidence that fire suppression is resulting in longer fire return intervals in subalpine forests and that these lengthened intervals increase competitive interactions between aspen and conifer species. We conducted a field and greenhouse study to compare photosynthesis, growth and defense responses of quaking aspen and subalpine fir regeneration under light reductions and shifts in soil chemistry that occur as conifers increase in dominance. The studies demonstrated that aspen regeneration was substantially more sensitive to light and soil resource limitations than that of subalpine fir. For aspen, light reductions and/or shifts in soil chemistry limited height growth, biomass gain, photosynthesis and the production of defense compounds (phenolic glycosides and condensed tannins). Biomass gain and phenolic glycoside concentrations were co-limited by light reduction and changes in soil chemistry. In contrast, subalpine fir seedlings tended to be more tolerant of low light conditions and showed no sensitivity to changes in soil chemistry. Unlike aspen, subalpine fir increased its root to shoot ratio on conifer soils, which may partially explain its maintenance of growth and defense. The results suggest that increasing dominance of conifers in subalpine forests alters light conditions and soil chemistry in a way that places greater physiological and growth constraints on aspen than subalpine fir, with a likely outcome being more successful recruitment of conifers and losses in aspen cover.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Calder</LastName>
<ForeName>W John</ForeName>
<Initials>WJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Horn</LastName>
<ForeName>Kevin J</ForeName>
<Initials>KJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>St Clair</LastName>
<ForeName>Samuel B</ForeName>
<Initials>SB</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>05</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Canada</Country>
<MedlineTA>Tree Physiol</MedlineTA>
<NlmUniqueID>100955338</NlmUniqueID>
<ISSNLinking>0829-318X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D062385">Hydroxybenzoates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010937">Plant Growth Regulators</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D044945">Proanthocyanidins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>I3P9R8317T</RegistryNumber>
<NameOfSubstance UI="C017616">phenolic acid</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="CommentIn">
<RefSource>Tree Physiol. 2011 Jun;31(6):579-81</RefSource>
<PMID Version="1">21778292</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D028202" MajorTopicYN="N">Abies</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000222" MajorTopicYN="N">Adaptation, Physiological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058448" MajorTopicYN="N">Biota</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D062385" MajorTopicYN="N">Hydroxybenzoates</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007313" MajorTopicYN="N">Insecta</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="N">Photosynthesis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010937" MajorTopicYN="N">Plant Growth Regulators</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018520" MajorTopicYN="N">Plant Shoots</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000469" MajorTopicYN="N">parasitology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044945" MajorTopicYN="N">Proanthocyanidins</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D036226" MajorTopicYN="N">Seedlings</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013472" MajorTopicYN="N">Sunlight</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014589" MajorTopicYN="N">Utah</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>5</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>5</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>11</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21602559</ArticleId>
<ArticleId IdType="pii">tpr041</ArticleId>
<ArticleId IdType="doi">10.1093/treephys/tpr041</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Utah</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Horn, Kevin J" sort="Horn, Kevin J" uniqKey="Horn K" first="Kevin J" last="Horn">Kevin J. Horn</name>
<name sortKey="St Clair, Samuel B" sort="St Clair, Samuel B" uniqKey="St Clair S" first="Samuel B" last="St Clair">Samuel B. St Clair</name>
</noCountry>
<country name="États-Unis">
<region name="Utah">
<name sortKey="Calder, W John" sort="Calder, W John" uniqKey="Calder W" first="W John" last="Calder">W John Calder</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002F42 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002F42 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21602559
   |texte=   Conifer expansion reduces the competitive ability and herbivore defense of aspen by modifying light environment and soil chemistry.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21602559" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020